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THE EFFECT OF SIN~U~~ITIES OF THE FOTENTIAL ENERGY ON THE 
INTEGRABILITY OF MECHANICAL SYSTEMS* 

S.V. BOLOTIN 

The effect of potential energy singularities on the existence of analytic 
first integrals of mechanical systems with two degrees of freedom is 
investigated. Applications to the restricted many-body problem are 
presented. 

1. Forxwlation of the results. Let M be the configuration manifold of a Lagrangian 
mechanical system with two degrees of freedom 

L=T -V+h (1.1) 

where L is the Langrangian function, T =I/, (q*,q*> is the kinetic energy defined on M by the 

Hiemannian metric (.) , v is the potential energy, and A = (v(q),q') is a linear function of 
the velocity defined by the vector field v on M. Bearing in mind applications to celestial 
mechanics, we will assume that T and A are functions of class Cz onM, andvis afunctionof 
classC2everywhereonM, exceptthefinite setXofsingular points of Newtoniantype. Thepointp f 
x c Mis calledasingularpointofpotential energy OfNewtoniantype, ifinlocalcoordinatesq 
on M with originatthepointpconformalrel.ativetOthemetric <,> 

v=--f&)/I91 

where f is a function of class C1 and f(o)>@. 
We will show that the presence of n> ?x(M) singular points of potential energy of the 

Newtonian type hinders the integrability of a mechanical system. Here x(M) is the Euler 
characteristic of M. The condition n> 2x (M) isnotsatisfiedonlywhenMis asphere n gd, a 
plane or projective plane n G&&i can be a torus a cylinder, a Klein bottle, or a &bius 
strip n = 0. 

We will now give exact formulations. The conformal coordinates on M determine the 
structure of an analytic manifold on it. Let H = T _t V be the energy integralinthephase 
space T(M \ 2). Then, when h>,wp* V the hypersurface of class Ca 

{H=h}cT(iW\Z) (1.21 

has the natural structure of an analytic manifold. The function is analytic on the hyper- 
surface (1.2), if it can be continued to a function that is analytic in the neighbourhood of 
the hypersurface (1.2) in T(M \ 2) and is uniform with respect to velocity. 

Theorem 1. SuppseMis compact and the potential energy t7 has n>zX(&f) singular points 
of Newtonian type. Then, when 

(1.3) 

there are no non-constant analytic functions on the hypersurface (1.2) that are the first 
integrals of the mechanical system. 

Note that the equations of motion of a mechanical system depend only on the differential 
dA of the linear form A.. Hence it is possible to replace in condition (1.3) u by v + gradf, 
where f is any smooth function on M. If v has no singular points, x(M)< 0 and the mechan- 
ical system is reversible, then Theorem 1 is identical with Kozlov's theorem /l/. 

When M is non-compact, additional conditions at infinity are necessary. Let X(M)> -00. 
It is then possible to convert M into a compact two-dimensional manifold @ by adding a finite 
number of infinitely distant points cc I. Let DiCM be diffeomorphic to disks in the neigh- 
bourhood of the points m, . Let us assume that each closed curve in Bi containing the point 
rni I cannot be extended to infinity inDtin the class of curves of length bounded in metric 
<,> * 

The following theorem is the main result of this paper. 

Theorem 2. Suppose M be non-compact, the kinetic energy T satisfies the condition at 
infinity, and the potential energy V has n> 2x(M) singular points of Newtonian type. We 
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will assume that the differential form d-Y maintains its sign. Then by condition (1.3; there 
will be no non-constant analytic functions at the energy level (1.2) that are the first in- 
tegrals of the mechanical system. 

By definition, the differential form dA maintains its sign, if either d.1 z 0 (the 
mechanical system is reversible) or M is orientable and d.1 = fe, where f> 0, and Q is a 
differentiable 2-form on M that does not vanish. 

Example. The restricted cyclic many-body problem. Let * points Pl?, .1 Pn be fixed in 
a plane M that rotates around the point OcM at constant angular velocity O_ M, and the 
point QG M moves under the action of the gravitational attraction of points P,. (3 Pn. The 
Lagrangian function has the form (1.1) where 

2. = 1'219' 12, .2 = tu (q), q', = ([O, 41, q'> 

I/=- x ’ 
i=t’ lq'iil 

_y*, Pi > O 

and the potential energy V has singularities on the set I = (p,,...,p,). 
The restricted many-body problem is integrable when n=i and for all 61 (Kepler's problem) 

and, also, when n=2 and o =0 (Euler's problem). We shall show that when n>2 and for all 
e the first integral of the restricted many-body problem is a function of the Jacobi integral 
H = Tf V. We have 

and di = ZlolQ. where P is the differential form of an area on the plane M. Since x(M) = 1. by 
Theorem 2, when n>2 and h>O, the restricted many-body problem has no analytic non-constant 
first integrals on the level of the Jacobi integral (H = h]. 

For the restricted three-body problem a similar statement has not been proved. Only 
weaker theorems are known /2, 3/. There is a hypothesis due to Shazi /4/ on the integrability 
of the restricted three-body problem on the level of the Jacobi integral (H=h),h>O. 

We will show that the conditions of Theorems 1 and 2 cannot be weakened. 

Theorem 3. Let the set Z CM, consisting of n points, the kinetic energy T, and IL E R 
be specified. Then the function V<h of class C2 exists on M \ Z which has singularities 
of the Newtonian type on Z , such that the mechanical system with the Lagrangian function 
L = T - v has an analytic first integral at the energy level T + V = h and is quadratic with 
respect to velocity. If M is non-compact or n< 2x(M), then V<h. 

The proof of Theorems 1 and 2 is based on the existence at the energy level (1.2) of an 
infinite number of periodic motions with real characteristic indices. We begin by reducing 
the general case to that in which there are no singularities of potential energy. 

2. Regularization. Suppose n>22(M) is the number of singular points of potential 
energy. 

Lemma 1. A two-dimensional manifold M'and an analytic mapping s: M'+nilexist such that 
1) the mapping m: M' \ n-l(Z) +M \ Zisacovering that is doubly branched over the set 

Z; 
2) x (IV') < 0. 

Proof. We shall consider three cases. 
lo. Let n be even. Region DC M exist diffeomorphic to a circle in the complex plane 

c such that x CD. We may assume that DcC. Let f be a polynomial of power R on D that 
vanishes at points of the set Z , and let D'be the Riemannian surface of the function v/7 /5/. 
Since n is even, the border 8D' consists of two connected components. We attach to each of 

them a specimen of M\ D . me .projectionx: M'-Mof the manifold obtained on M is a double- 
sheeted covering doubly branched over z . By the Riemann-Hurwitz formula we have x(M')= 
2X(M)--<o/s/. 

Z". Let n>i be odd. We select any point pE Z and construct, as in lo, a double- 
sheeted covering n: N-M branched over I \(P) f The set .-I (P) consists of two points so 

that a double-sheeted covering IT': M’- Nbranching over n-'(p) exists. The mani.foldM'and cover- 
ing 1'0 n satisfy the condition of the lemma, and x(M') = 2(2x(M) - n)<O. 

3O. Let n= 1. Since n>Zx(M) , hence x(M)<0 so that M is not simply connected. EIence 
a double-sheeted non-branching connected covering of M exists, and this case reduces to the 
one already considered. 

We fix the value of the energy h and the set Z' = n-1 (8). 

Lemma 2. A Riemannianmetric T', a function V', and a form A' linear with respect to 
velocity of class C*on existM'such that 

1) the projection n: iM'\ Z'- M \ 2: that transforms the trajectories of motion of the 
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mechanical system with the Lagrangian function L' = T' - Jr' -C A' on TM’ of energy H’ = T’ 4 
1” = (I into trajectories of motion of the initial mechanical system of energy H = h; 

2) 1" / Z’<O. 

Proof. The Riemannian metric T defines a conformal structure on M. Let T’ be an arbit- 

rary Riemannian metric of class C 0 on M' which defines the respective conformal structure on 
I'PV and such that T'= rr*T outside some neighbourhood of the set 2'. Since x: M’- M is a 

conformal mapping, a non-negative function IG P(M') exists that n*T =fT’. 
We set 

V’jM’\r’=t(Vnn--h), A’=Z*A 

Let g= Sv(h_ v) T+N be the Jacobi metric on ~12 that corresponds to energy h, and 
let g' = 2)/--1"T'+ A be the Jacobi metric on M’\ 2’, that corresponds to zero energy. To 

prove the first statement of the lemma it is sufficient by Maupertius's principle to show 
that n*g= g' on M'\.X'. But this follows from the definition of V'and A'. 

It remains to prove that for any point pi I' the function v'is continuable to a function 
of class ~1 in the neighbourhood of p and V' (p) < 0. Let g: U-C be the conformal coordinate 
in the neighbourhood U of the point n(p) with its origin at n(p), and 5: V-C the respective 
Levi-Civita coordinate /6/ in the neighbourhood U'= n-l(U) of the point p: c*= go II. Then the 
Jacobian of the mapping II in coordinates 6, q' is IZcl'= 41qosl so that the metric n*T is 
divisible by lqDfi I. Therefore the function fis dividedbylq 0 nI.Bydefinitionofthe singularpoint 

of Newtonian type V’ = IV0 n --fh is continuable to a functionof class P in region V' and V’(p)<O. The 
lemmaisproved. We shall callthemechanicalsystemwith the Lagrangian function L’ = p’ - V’ + 11’ 
aregularizedsystem. 

Corollary. Let an analytic first integral of a mechanical system exist at the energy 
level (1.2). Then the analytic first integral of the regularized system exists at the energy 
level {H’ = 0). 

Proof. By Lemma 2 a regularized system has an analytic first integral F in region U= 
(M'= 0) n T(I@\Z’). It remains to show that F is continuable to the analytic function F'on 
(X'= 0). Let g* be the phase flux of a regularized system. Since (V’=O) n Z’=@, the set 
(H’= O)\ u does not contain the equilibrium position of the flux gf, and the trajectories of 

e' are transversal{M'= O)‘\ (i.Hence for fairly small~t>O'wehave g*U U U = {H'= 0). Weput F’ j glu= 

F~ g-l. Since F = Fog-l onU’n g’V, hence F'is acorrectly definedanalytic function on {H‘=O), which 
it was required to prove. 

If the input mechanical system satisfies the conditions of Theorems 1 and 2, the regular- 
ized system has the same properties. Therefore, when proving Theorems 1 and 2, we may assume 
that V is a function of class C2 over the whole M and x(M)<O. 

3. The first integrals of the geodesic flux. The non-existence of first in- 
tegrals (Theorems 1 and 2) is derived from the following general statement. Let Mbe a smooth 
two-dimensional manifold and Ai c M a two-dimensional submanifold with border aN . We call 
aN geodesically convex in the Finslerian metric g on M , if the following conditions are 
satisfied. Let t-y (t) be the geodesic metric g such that y (O)=aN, and let the vector 
Y' (0) be tangent to BN: Then y (t)EM \ N for fairly small t E R. 

Lemma 3. Let g be a positive definite Finslerian metric of class Cz on the connected two- 
dimensional analytic manifold M. Let NcM be a compact two-dimensional submanifold with 
a border, the submanifold being such that the border aN is geodesically convex in metric g 
and x (N) < 0. Then non-constant analytic first integrals of the geodesic flux on T,M do 
not exist. 

When N = M and the border aN is empty, while g is the Riemannian metric on M, we have 
KOZ~OV'S theorem /l/. The proof of this lemma is given in /7/. The Riemannian metric was 
considered there but its extension to a Finslerian metric does not present difficulties. 

If the border 8N is empty, the proof of the lemma repeats the proof of Kozlov's theorem. 
Let a,~ be non-empty. We assume that the equations of the geodesic flux have an.analytic 
first integral F on TIM. Since M iS non-compact, the Liouville theorem cannot be applied. 
However, using the convexity of aN, we can show that each non-singular surface of the level 
of integral F, which contains the periodic trajectory of the geodesic flux in T,N, is a two- 
dimensional torus contained in T,N. 

Since x(S)<0 and the border aN is non-empty, the fundamental group n,(N) is a free 
non-Abelian group. Since the border aN is convex, the shortest closed geodesic in 11 with 
real characteristic indices correspond to each class of conjugate elements n,(N). Using the 
property of surfaces of the level F presented above, and the generalization of the theorem 
/0/ on asymptotic geodesics I it can be shown that the integral F has an infinite number of 
critical values on T,A and is, consequently, constant. We omit the details. 

Let the potential energy by VE C2(M), x(M)<& let h be the energy, and 
V)T+ A the Finslerian Jacobi's metric on M. 

g=2fF 
To prove Theorem 1 it is sufficient to prove 
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that the following lemma holds. 

Lemma 4. Under condition (1.2) the Jacobi metric is positive definite: g>2\li(k -Ii (q. 
L- (q))) T. 

The proof follows from the Cauchy inequality, i.e. 

I ii I = I <u kh 4’) I < II u Cd II . II 4.11 
so that 

g > 2 6T (V/h-- V(q)- f/‘/z I/ v(q) 119 i > 
2 V/(h - v (9) - I/2 !I 0 (q) II? T 

since h - V (q) > I/, II u (q) 11 2. 
To prove Theorem 2 it is necessary to construct the submanifold NcM that.satisfies 

the condition of Lemma 3. Let the conditions of Theorem 2 be satisfied. 

Lemma 5. A submanifold ,licM exists such that N is homotopically equivalent to M, and 
the border L?N is geodetically convex in the Jacobi metric. 

Proof. Let the mechanical system be irreversible (the case of reversibility is simpler). 
Then M is orientable, and dA = fQ,f>,O, where $2 is a differentiable 2-form on M which does not 
vanish. The form Q defines the orientation of M. 

Lemma 6. Let the oriented boundary of region DC M be the closed geodesic of the 
Jacobi metric. Then region M\ D is geodesically convex in the Jacobi metric. 

Proof. Let r be the vector'of the tangent to the oriented curve dD at the pointpE 8D. 
and n the vector of the inner normal to aD: cr,n) = 0: IIrII=j/nl]= l.Then by definition of the 
oriented boundary Q(T, n)>O. We shall show that the small geodesic y of metric 4 which is 
tangent to aD at the point p is entirely contained in D. If y and aD are equallyorientedat 
thepointp, eenyC8D. Let v and aD be oppositely directed. By Maupertius's principle the 
curves aD and y are the trajectories of motion t- y+ (t) and t - y-(t) of a mechanical system 
with energy h and initial conditions 

Y* (0) = P? y*' (0) = U* = &-v-2 (h - V(P)) z (3.1) 

The curvature k&of trajectories y* are determined at the point p for the selected normal 
at that point. From the equations of motion we have 

k* 11 uf Ij * = - (grad V(P), n> - dA (Q, n) 

By virtue of (3.1) 

k___k + = dA(u+---vn) = 
Iu*lP 

&f(P)Q(V)1,0 

Hence the curvature k_ of the curve y at the point p is greater than the curvature k, of 
the curve aD at the same point p, which it was required to prove. 

Let D,cg be the neighbourhood of infinitely distant points of M that are diffeo- 
morphic to disks, and 3Di be the oriented boundaries of regions Di . Since M is multiply 
connected, curves 8Di are non-contracting in t-f. If follows from Lemma 4 that the Jacobi 
metric g satisfies on M the condition at infinity, which is similar to the condition (,> 
on the Riemannian metric. We derive from here by standard methodsof the calculus of varia- 
tion as a whole /9/ that the homotopic class of every closed and oriented curve aD, contains 
the shortest closed geodetic r( of the Finslerian metric g. 

It is sufficient to show that the geodesics ri are non-selfintersecting and ri n rj = 0 
when i+j. Then by Lemma 6 the curves ri bound the submanifold NC M that satisfies the 
condition of Lemma 5. 

Since the Jacobi metric g is irreversible, the usual Liusternik-Shirel'man method is 
inapplicable. It can be shown that the geodesic r, is the oriented boundary aci of the 
2-chain Ciimbedded in Rwith retained orientation. 

The following is an outline of the proof. Let S(y) be the length 7 in the Jacobi metric 
g for any oriented curve ~CM . By Lemma 4 S(y)>0 . Let ~1. t > 0: y0 = 8Di be the homotopy 
of the closed curve dDi that reduces the action of S /9/. It can be assumed that yt is a 
broken geodesic. Let ~>0 be the greatest number such that when t<s the curve y1 is the 
boundary of the 2-chain imbedded in iii with retained orientation. Then, when t=T the 
touching of two arcs of the curve y% occurs at some point p (the idea of the inner side of 
curve y1 is, by our assumption well-posed). Point p divides ur into two closed curves, 
one of which is homotopic to yI in M. Denoting it by y;, we have S (vr')< S(y,) so that it 
is possible to replace vT by yr’ . It is, thus, possible to obtain the homotopy 8Di that 

reduces the action in the class of curves that are the boundary of the 2-chain imbedded in ‘2 
with retained orientation, which it was required to prove. 

We shall show that curves r,and r,do not intersect. The same reasoning applied for 
proving that curve ri is non-selfintersecting. The proof is based on the sign-constancy of 
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the differential form dA for any 2-chain D imbedded in M with retained orientation. 

ss dh>O 
D 

Let r! = aCi, r, = aC, and ri n r,# 0. Then D = Cf n Cj is a 2-chain (possible degener- 

ate) imbedded in M with retained orientation. We have 8D = a + fl, where arc rr and pcrr 
are oriented l-chains whose orientation is the same as that of rl and r,. 

The action of the Jacobi oriented curve ~cM is 

s (v) = L (v) + 5 A 
Y 

where L(y) is the length of curve 7 in the Riemannian metric 2v(h- V)T. We assume that 

L (a) > 14 (B) and set r =(r, \ a)- 8, where -pis the chain p of opposite orientation. Then 

r is a closed curve homotopic to ri, and 

s(ri)-S(r)=S(a)-S(-P)=L(a)+SA--L(B)+ !A= 
(r 

Since riis the shortest closed geodesic homotopic to aD,, r is also a geodesic of the 
Jacobi metric /9/, and S(r)= S(I’,). Consequently r = rl, from which a = -fl . But this 
contradicts the convexity of curves r,and rl (Lemma 6). Theorem 2 is proved. 

4. Integrable systems. Let T be the Riemannian metric of classCI on the two- 
dimensionalmanifoldM (the kinetic energy). We construct the potential energy V<h on 
M \ x that satisfies the condition of Theorem 3. Let us assume that either M is non-compact 
or n = 21 (M). The remaining cases are similarly treated. 

Lemma 7. A function V< h of class C2 on M \ Z exists that has singularities of 
Newtonian type on X such that 'l,A In (h - V)= K, where K is the Gaussian curvature of 
metric T, and A is the Laplace operator. 

Proof. Let U be any smooth positive function on M\Z such that the function -U has 
singularities of the Newtonian type at points of set I. Then in conformal coordinates g 
in the neighbourhood of the point pi I we have u = f(q)ilq~, ~(o)>o. Hence 

ln u (q) = In f (q) - Vl (In q + In F), A In U = Aln t (4.1) 

so that Als U is a smooth function on M. It is sufficient to show that a smooth function cp 
exists on M and is such that 

Acp= K- 'fpA In U (4.2) 

Indeed, it is #en possible to set V= h- UP. 
If the manifold M is non-compact, Eq. (4.2) always has a solution /5/. We assume that M 

is compact, and m= 2x(M). For simplicity w'e assume M to be oriented and P to be the differ- 
tial form of an area in M. By Green's formula and by virtue of (4.1) we have 

ss +AInU.Q=-)'--I 
ss 

d(dInU)=2s res,dlnU= 

M M FGz 
dq 

m*resoT=nn 

By the Gauss-Bonnet formula 

SS( K- Q=2nx(M)-ss=O 

M 

Consequently Eq.(4.2) has a solution. The lemma is proved. 
The Gaussian curvature ofthe Jacobi metric g = 2f-r of the system constructed 

is 

Kg= T&T) K- ( 
+Aln(h-V))=O 

Hence the Jacobi metric of the system regularized on M’is Euclidean. It can be shown 
that the regularized system has the first integral F on the zero level of energy in TM' 
which is linear with respect to velocity. In the compact caseh4'is a torus, OS that this 
is obvious. Let n:M’+M be a double sheeted covering constructed in Lemma 1, and a: M'+ 
M'be the involution transposing the layers no Q = R and as= 1. It can be shown that o*F = 
-F. Hence the function Pis invariant to involution (I and, consequently, reduces by 
projection n to the first integral, which is quadratic with respect to velocity, of the 
system constructed at the level of energy (T + V =h). 
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ON THE STABILITY OF A SOLID ROTATING AROUND THE VERTICAL AND 
COLLIDING WITH A HORIZONTAL PLANE* 

Translated by J.J.D. 

A.P. MARKEEV 

The motion of a heavy solid with a convex surface above an absolutely 
smooth horizontal plane is considered. Collisions of the body with the 
plane during its motion are assumed to be absolutely elastic. The 
stability of such motion is investigated when the body rotates at constant 
angular velocity around the vertical , while its centre of mass moves 
between collisions on a parabola or along a fixed vertical line coinciding 
with the axis of rotation of the body. Stability conditions are obtained 
to a first approximation for arbitrary values of the parameters of the 
problem. Special cases of a non-rotating body with geometrical and dynamic 

symmetry, and of a body whose surface in the neighbourhood of the point 
of contact with the plane is close to spherical, are analyzed in detail, 
A peculiar "quantification" of stability and instability along the height 
of jumps of the body over the plane was found in the case of a rotating 
body. 

The problem of the stability of the motion of a solid with a convex surface of arbitrary 
form and an arbitrary inertia tensor when there is a non-retaining connection, has not so far 
been investigated. Investigations in the theory of vibrating-collision systems have dealt 
with either material points or homogeneous spheres, which in the case of a smooth plane is, 
from the point of view of dynamics, the same. 

1. Let a solid move in a gravitational field above a stationary horizontal plane. The 
surface of the body is assumed to be convex, and the plane is assumed to be absolutely smooth. 
During its motion the body may touch the plane at a point on its surface. Then, if a collis- 

ion occurs, it is assumed,to be absolutely elastic. 
Let Ozyz be a system of coordinates with origin at the point 0 of the horizontal plane. 

The Oz axis is directed vertically upward. We denote the coordinates of the centre of mass 

G by z,y,z r and attach to the body a system of coordinates GStlS whose axes are directed 
along its principal central axes of inertia. The orientation of the body relativetodbsolute 
space is defined by Euler's angles 8,cp,$1 which are conventionally introduced. We denote the 
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