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THE EFFECT OF SINGULARITIES OF THE POTENTIAL ENERGY ON THE
INTEGRABILITY OF MECHANICAL SYSTEMS

S$.V. BOLOTIN

The effect of potential energy singularities on the existence of analytic
first integrals of mechanical systems with two degrees of freedom is
investigated. Applications to the restricted many-body problem are
presented.

1. Formulation of the results. Let M be the configuration manifold of a Lagrangian
mechanical system with two degrees of freedom

L=7T—V+A (1.1}

where L is the Langrangian function, =1%,(¢,¢> is the kinetic energy defined on ¥ by the
Riemannian metric ¢, , V is the potential energy, and A = (v (g), ¢> is a linear function of
the velocity defined by the vector field p on M. Bearing in mind applications to celestial
mechanics, we will assume that T and A are functions of class (? on¥, and Vv is a function of
classC? everywhere on M, except the finite set I of singular points of Newtonian type. The point p &
S ¢ M is called a singular point of potential energy of Newtonian type, if in local coordinates ¢
on M with origin at the point p conformal relative to the metric )

V=—f@/]q]

where f is a function of class €* and f(0) > 0.

We will show that the presence of nr > 2y (M) singular points of potential energy of the
Newtonian type hinders the integrability of a mechanical system. Here 1y (M) is the Euler
characteristic of M. The condition n > 2y (M)is not satisfied only when M is a sphere R < 4, a
plane or projective plane n < 2; M can be 2 torus a cylinder, a Klein bottle, or a Mdbius
stripn = 0.

We will now give exact formulations. The conformal coordinates on M determine the
structure of an analytic manifold on it. Let H =T + V Dbe the energy integral in the phase
space T (M “_ I). Then, when % > supy V the hypersurface of class (2

(H=RmCTM\2) (1.2)

has the natural structure of an analytic manifold. The function is analytic on the hyper-
suxrface (1.2), if it can be continued to a function that is analytic in the neighbourhood of
the hypersurface (1.2) in T (M N\ 2) and is uniform with respect to velocity.

Theorem 1, Suppose M is compact and the potential energy V has n > 2y (M) singular points
of Newtonian type. Then, when

h>sup H (g, v@)=sup (- 10 @ +V (@) (1.3)

there are no non-constant analytic functions on the hypersurface (1.2} that are the first
integrals of the mechanical system.

Note that the equations of motion of a mechanical system depend only on the differential
dA of the linear form A. Hence it is possible to replace in condition {(1.3) v by v + gradf,
where f is any smooth function on M. If V has no singular points, % {M)< 0 and the mechan~
ical system is reversible, then Theorem 1 is identical with Kozlov's theorem /1/.

when M is non-compact, additional conditions at infinity are necessary. Let % (M)> —oo.
It is then possible to convert M into a compact two-dimensional manifold M by adding a finite
number of infinitely distant points oo;. Let D; (" M be diffeomorphic to disks in the neigh-
bourhood of the points oo, . Let us assume that each closed curve in I}, containing the point
oo; , cannot be extended to infinity in D;in the class of curves of length bounded in metric
<1> -

The following theorem is the main result of this paper.

Thecrem 2. Suppose M be non-compact, the kinetic energy T satisfies the condition at
infinity, and the potential energy V has n > 2y (M) singular points of Newtonian type. We
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will assume that the differential form <A\ maintains its sign. Then by condition (1.3} there
will be no non-constant analytic functions at the energy level (1.2) that are the first in-
tegrals of the mechanical system.

By definition, the differential form dA maintains its sign, if either d.\ =0 (the
mechanical system is reversible) or M is orientable and dA = fQ, where >0, and Qis a
differentiable 2~form on M that does not vanish.

Example. The restricted cyclic many-body problem. Let n points p;,..., pn be fixed in
a plane M that rotates around the point 0cC M at constant angular velocity o _ M. and the
point 4e& M moves under the action of the gravitational attraction of points pi.....Pn. The

Lagrangian function has the form (l1.1l) where

T =Ygk A=wl, ¢ =<o,q >
n
- B g
V=— 3y i . w0
Z le—p;l 2 ki =
i=1
and the potential energy V has singularities on the set I ={p,...,pn}.
The restricted many-body problem is integrable when n=1 and for all o (Kepler's problem)
and, also, when n=2 and o =0 (Euler's problem). We shall show that when »>2 and for all

o the first integral of the restricted many-body problem is a function of the Jacobi integral
H=T+ V. We have

g vy =7+ Lol -} <o
i=l !

and d\ = 2|0|Q, where Q is the differential form of an area on the plane M. Since y(M)=1. by
Theorem 2, when n>2 and #>0, the restricted many-body problem has no analytic non-constant
first integrals on the level of the Jacobi integral {H = a}.

For the restricted three-body problem a similar statement has not been proved. Only
weaker theorems are known /2, 3/. There is a hypothesis due to Shazi /4/ on the integrability
of the restricted three-body problem on the level of the Jacobi integral ({# ='h), h>0.

We will show that the conditions of Theorems ! and 2 cannot be weakened.

Theorem 3. Let the set I (C M, consisting of n points, the kinetic energy T, and h = R
be specified. Then the function V <k of class (C® exists on M \ ¥ which has singularities
of the Newtonian type on X , such that the mechanical system with the Lagrangian function
L =T —V has an analytic first integral at the energy level T + V =& and is quadratic with
respect to velocity. If M is non-compact or n < 2y (M), then V < h.

The proof of Theorems 1 and 2 is based on the existence at the energy level (1.2) of an
infinite number of periodic motions with real characteristic indices. We begin by reducing
the general case to that in which there are no singularities of potential energy.

2. Regularization. Suppose n>2Y (M) is the number of singular points of potential

energy.
Lemma 1. A two-dimensional manifold M’and an analytic mapping n: M’ — Mexist such that

1) the mapping n: M’ \ n"!(Z)— M \ Zisacovering that is doubly branched over the set
Zi
2) MMy <o.

Proof. We shall consider three cases.

1°. Let n be even. Region D C M exist diffeomorphic to a circle in the complex plane
C such that 3 < D. We may assume that pc . Let f be a polynomial of power n on D that
vanishes at points of the set 3z , and let D’ be the Riemannian surface of the function V7 /5/.
Since n is even, the border 4D’ consists of two connected components. We attach to each of
them a specimen of M\ D . The .projectiona: M’ — Mof the manifold obtained on M is a double-
sheeted covering doubly branched over T . By the Riemann-Hurwitz formula we have X (M) =
2y (MY —n<0/5/. o

2°. Let n>1 be odd. We select any point pe £ and construct, as in 17, a double-
sheeted covering a: N — M branched over I\ {p} - The set a-!(p) consists of two points so
that a double-sheeted covering a’: M’ — N branching over n-!(p) exists. The manifold M’ and cover-
ing a’»n satisfy the condition of the lemma, and x (M’) = 2 (2% (M) — n) < 0.

3°. Let n=1. Since n>2y (M), hence x(M)<0 so that M is not simply connected. Hence
a double-sheeted non-branching connected covering of M exists, and this case reduces to the
one already considered.

We fix the value of the energy h and the set £’ = n™! (Z).

Lemma 2. A Riemannian metric T', a function V', and a form A’ linear with respect to
velocity of class C?®on exist M’'such that
1) the projection m: M'\ 5'—~ M \ I that transforms the trajectories of motion of the
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mechanical system with the Lagrangian function L' =T — V' + A" on TM' of energy H =T 4
V' =0 1into trajectories of motion of the initial mechanical system of energy H = h;

2) v} 2L

Proof. The Riemannian metric T defines a conformal structure on M. Let T' be an arbit-
rary Riemannian metric of class (¢? on M’ which defines the respective conformal structure on

M’ and such that 7’ = n*T outside some neighbourhood of the set I’. Since n: M'— M is a
conformal mapping, a non-negative function fe €?(M') exists that a*T = fT'.
We set

VIMNS =f(Von—h), A'=nA

Let ¢=2V(h— V) T+ A be the Jacobi metric on pm\ I that corresponds to energy h, and
let ¢ =2¥ =V'T'+ A’ be the Jacobi metric on M’\ I', that corresponds to zero energy. To
prove the first statement of the lemma it is sufficient by Maupertius's principle to show
that =n*g=¢ on M \ I'. But this follows from the definition of ¥V’ and A'.

It remains to prove that for any point pe 2’ the function V'is continuable to a function
of class ¢? in the neighbourhood of p and V' (p)<0. Let ¢ U- C be the conformal coordinate
in the neighbourhood U of the point =x(p) with its origin at =an(p), and {: U'—C the respective
Levi-Civita coordinate /6/ in the neighbourhood U’ = n-3(U) of the point p: §? = go n. Then the
Jacobian of the mapping n in coordinates {,¢  is |2{|*=4|ge 7| so that the metric =a*I is
divisible by |gq-n| Therefore the function f is dividedby]¢e- n|. By definition of the singular point
of Newtonian type V' = fV o n — fh is continuable to a function of class ¢* in region U’ and v’ (p) < 0. The
lemma is proved. We shall call the mechanical systemwith the Lagrangian function L' = T/ — V' + A’
a regularized system.

Corollary. Let an analytic first integral of a mechanical system exist at the energy
level (1.2). Then the analytic first integral of the regularized system exists at the energy
level (H' = 0).

Proof. By Lemma 2 a reqgularized system has an analytic first integral F in region U =
(H' =0} N T'(M'\( Z'). It remains to show that F is continuable to the analytic function F’ on
{H’ =0}. Let g' be the phase flux of a regularized system. Since {V' =012’ =¢, the set
{H'=0\\ U does not contain the equilibrium position of the flux g, and the trajectories of
gt are transversal {H = 0} \ U.Hence for fairly small«t>0we have g!U U U= {H'=0}. Weput F' | g'U =
Fogt Since F= Fopgt! onUT ¢g'U,hence F' isa correctly defined analytic function on {#' = 0}, which
it was required to prove.

If the input mechanical system satisfies the conditions of Theorems 1 and 2, the regular-
ized system has the same properties. Therefore, when proving Theorems 1 and 2, we may assume
that vV is a function of class (? over the whole M and g (M) < 0.

3. The first integrals of the geodesic flux. The non-existence of first in-
tegrals (Theorems 1 and 2) is derived from the following general statement. Let Mbe a smooth
two~-dimensional manifold and N ¢ M a two-dimensional submanifold with border 4N . We call
0N geodesically convex in the Finslerian metric g on M, if the following conditions are
satisfied. Let ¢-»y (t) be the geodesic metric g such that y (0) = dN, and let the vector
v (0) Dbe tangent to gN. Then y(t)e=M \ N for fairly small ¢ R.

Lemma 3. Let g be a positive definite Finslerian metric of class (® on the connected two-
dimensional analytic manifold M. Let N (C M be a compact two-dimensional submanifold with
a border, the submanifold being such that the border dN is geodesically convex in metric g
and 7% (N)<<0. Then non-constant analytic first integrals of the geodesic flux on M do
not exist.

When N = M and the border 9N is empty, while g is the Riemannian metric on M, we have
Kozlov's theorem /l1/. The proof of this lemma is given in /7/. The Riemannian metric was
considered there but its extension to a Finslerian metric does not present difficulties.

If the border 4§ 1is empty, the proof of the lemma repeats the proof of Kozlov's theorem.
Let aN be non-empty. We assume that the equations of the geodesic flux have an. analytic
first integral F on 7T M. Since M is non-compact, the Liouville theorem cannot be applied.
However, using the convexity of 3N, we can show that each non-singular surface of the level
of integral F, which contains the periodic trajectory of the geodesic flux in 7N, is a two-
dimensional torus contained in T\N.

Since y (V)< 0 and the border oN is non-empty, the fundamental group =, (N) is a free
non-Abelian group. Since the border oN is convex, the shortest closed geodesic in N with
real characteristic indices correspond to each class of conjugate elements m, (V). Using the
property of surfaces of the level F presented above, and the generalization of the theorem
/8/ on asymptotic geodesics, it can be shown that the integral F has an infinite number of
critical values on 7T,N and is, consequently, constant. We omit the details.

Let the potential energy by V e C*(M), y (M) < 0, let h be the energy, and g =2y —
V)T + A  the Finslerian Jacobi's metric on M. To prove Theorem 1 it is sufficient to prove
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that the following lemma holds.

Lemma 4. Under condition (1.2) the Jacobi metric is positive definite: g>2V(h — H (q.

vig) T.
The proof follows from the Cauchy inequality, i.e.

fAl={<@ o I<llvigl-] g
so that

e>2VT Vi—V—V7%Riv ) >
2V(—=Vig)— v |HT

since A —V(g) > llv(@ll*
To prove Theorem 2 it is necessary to construct the submanifold N C M that.satisfies
the condition of Lemma 3. Let the conditiocns of Theorem 2 be satisfied.

Lemma 5. A submanifold N (C M exists such that N is homotopically equivalent to M, and
the border 9N is geodetically convex in the Jacobi metric.

Proof. Let the mechanical system be irreversible (the case of reversibility is simpler).
Then M is orientable, and dA =/Q,f> 0, where Q is a differentiable 2-form on ¥ which does not
vanish. The form Q defines the orientation of M.

Lemma 6. Let the oriented boundary of region D M be the closed geodesic of the
Jacobi metric. Then region M \ D is geodesically convex in the Jacobi metric. ’

Proof. Let © be the vector of the tangent to the oriented curve 4D at the point p = dD,
and n the vector of the inner normal to 4D: ¢x,m> = 0;|t|=§n{= 1. Then by definition of the
oriented boundary (1,n) >0. We shall show that the small geodesic y of metric g which 1is
tangent to 3D at the point p is entirely contained in D. If y and 4D are equally oriented at
the point p, thenyC dD. Let vy and oD Dbe oppositely directed. By Maupertius's principle the

curves 4D and y are the trajectories of motion t— vy, (t) and t-—y- () of a mechanical system
with energy h and initial conditions
12 O =p v O =vy=fV2G =V (3.1)

The curvature kg of trajectories vy, are determined at the point p for the selected normal
at that point. From the equations of motion we have

ki||vi[]2=—<grad V (p), n> — dA (u:‘:Y n)
By virtue of (3.1)

. o dA(v,—v_n) _ 2 0
k. k+~W——me(p)9(r,n>>

Hence the curvature k_of the curve y at the point p is greater than the curvature k, of
the curve gp at the same point p, which it was required to prove.

Let D,C'M be the neighbourhood of infinitely distant points of ¥ that are diffeo-
morphic to disks, and 4D; be the oriented boundaries of regions D; . Since M is multiply
connected, curves dD; are non-contracting in M. If follows from Lemma 4 that the Jacobi
metric g satisfies on M the condition at infinity, which is similar to the condition ()
on the Riemannian metric. We derive from here by standard methods of the calculus of varia-
tion as a whole /9/ that the homotopic class of every closed and oriented curve 4D; contains
the shortest closed geodetic [, of the Finslerian metric g.

It is sufficient to show that the geodesics TI'; are non-selfintersecting and LNr=g
when {sj. Then by Lemma 6 the curves I'; bound the submanifold N T M that satisfies the
condition of Lemma 5.

Since the Jacobi metric g is irreversible, the usual Liusternik-Shirel'man method is
inapplicable, It can be shown that the geodesic I'; is the oriented boundary &C; of the
2-chain C; imbedded in M with retained orientation.

The following is an outline of the proof. Let S(y) be the length y in the Jacobi metric
g for any oriented curve yC M . By Lemma 4 S(y) >0 . Let y,t> 0,y = aD; be the homotopy
of the closed curve ap; that reduces the action of S /9/. It can be assumed that vy, is a
broken geodesic. Let >0 be the greatest number such that when t<+t the curve y, is the
boundary of the 2-chain imbedded in M with retained orientation. Then, when t=< the
touching of two arcs of the curve vy, occurs at some point p (the idea of the inner side of

curve v, is, by our assumption well-posed) . Point p divides ¥, into two closed curves,
one of which is homotopic to vy, in M. Denoting it by v/, we have §(y/) < S(w) so that it
is possible to replace y; by ¥ . It is, thus, possible to obtain the homotopy 4D; that

reduces the action in the class of curves that are the boundary of the 2-chain imbedded in M
with retained orientation, which it was required to prove.

We shall show that curves I';and [;do not intersect. The same reasoning applied for
proving that curve I'; is non-selfintersecting. The proof is based on the sign-constancy of
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the differential form dA for any 2-chain D imbedded in M with retained orientation.

faa>o

D
Let Iy =06C;, I;=0C; and T; N Tys= @ Then D= (C; [ C; is a 2-chain (possible degener-

ate) imbedded in M with retained orientation. We have gD = a + B, where aC Iy and BCT;
are oriented l-chains whose orjentation is the same as that of Ty and T,
The action of the Jacobi oriented curve yC M is

sm=Lm+{a
v
where L (y) is the length of curve y in the Riemannian metric 2]/(h—- V) T. We assume that
L(a) > L(B) and set T =(I; \\ @) — B, where —P is the chain P of opposite orientation. Then
I' is a closed curve homotopic to I';, and

S(r,.)—S(I‘)=S(a)—S(—ﬁ)=L(a)+SA—L(ﬁ)+§A=

L(a)—L(ﬁ)+§)SdA>0
Since I'; is the shortest closed geodesic homotopic to 8Dy, T is also a geodesic of the

Jacobi metric /9/, and S ()= S (I;). Consequently T =T,, from which a = —f . But this
contradicts the convexity of curves T;and T, (Lemma 6). Theorem 2 is proved.

4., Integrable systems. Let T be the Riemannian metric of class C? on the two-

dimensional manifoldM (the kinetic energy). We construct the potential energy V< h on
M N\ Z that satisfies the condition of Theorem 3. Let us assume that either M is non-compact
or = 2y (M). The remaining cases are similarly treated.

Lemma 7. A function V<h of classC*on M\ I exists that has singularities of
Newtonian type on X such that !,Aln(h — V)= K, where K is the Gaussian curvature of
metric T, and A is the Laplace operator.

Proof. Let U be any smooth positive function on M N\ X such that the function —U has
singularities of the Newtonian type at points of set £ . Then in conformal coordinates g
in the neighbourhood of the point pe& X we have U=1f(g)/|¢!], f(0)>0 . Hence

InU(@=1nf(g) —Yy(lng+Ing), AlnU=Alnt (4.1)

so that Aln U is a smooth function on M. It is sufficient to show that a smooth function ¢
exists on M and is such that
Ap=K—Y,Aln U (4.2)

Indeed, it is then possible to set V =h — U

If the manifold M is non-compact, Eq. (4.2) always has a solution /5/. We assume that M
is compact, and n= 2y (M). For simplicity we assume M to be oriented and Q to be the differ-
tial form of an area in M. By Green's formula and by virtue of (4.1) we have

1 Q=—V=1 - -
SMSTAmUQ v 1SMS 4@ l) hp;zrespalnlf

rm~reso£qg =nn

By the Gauss-Bonnet formula

SS(K—_;.Aan)Q=Zux(M)—M=O

Consequently Eg.(4.2) has a solution. The lemma is proved.
The Gaussian curvature of the Jacobi metric g = 2y (k — V) T ©of the system constructed
is

K,=7(h;_v-.-)(K—%A1n(h—-V)>=0
Hence the Jacobi metric of the system regularized on M'is Euclidean. It can be shown
that the regqularized system has the first integral F on the zero level of energy in TM'
which is linear with respect to velocity. In the compact caseM’'is a torus, os that this
is obvious. Let m:M — M be a double sheeted covering constructed in Lemma 1, and o: M —
M’ be the involution transposing the layers moco =m and of=1. It can be shown that o*F =
—F. Hence the function F?*is invariant to involution ¢ and, consequently, reduces by
projection n to the first integral, which is guadratic with respect to velocity, of the
system constructed at the level of energy (T + V = h).
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ON THE STABILITY OF A SOLID ROTATING AROUND THE VERTICAL AND
COLLIDING WITH A HORIZONTAL PLANE

A.P. MARKEEV

The motion of a heavy solid with a convex surface above an absolutely
smooth horizontal plane is considered. Collisions of the body with the
plane during its motion are assumed to be absolutely elastic. The
stability of such motion is investigated when the body rotates at constant
angular velocity around the vertical, while its centre of mass moves
between collisions on a parabola or along a fixed vertical line coinciding
with the axis of rotation of the body. Stability conditions are obtained
to a first approximation for arbitrary values of the parameters of the
problem. Special cases of a non-rotating body with geometrical and dynamic
symmetry, and of a body whose surface in the neighbourhood of the point

of contact with the plane is close to spherical, are analyzed in detail,

A peculiar "quantification" of stability and instability along the height
of jumps of the body over the plane was found in the case of a rotating
body.

The problem of the stability of the motion of a solid with a convex surface of arbitrary

form and an arbitrary inertia tensor when there is a non-retaining connection, has not so far
been investigated. Investigations in the theory of vibrating-collision systems have dealt
with either material points or homogeneous spheres, which in the case of a smooth plane is,
from the point of view of dynamics, the same.

1. Let a solid move in a gravitational field above a stationary horizontal plane. The

rface of the body is assumed to be convex and the plane is assumed to be absolutelvy smooth.

suriface oI The O0QY assunelt Lo o€ CCNvVeEXR, anll TLe p.ald utely
During its motion the body may touch the plane at a point on its surface. Then, if a collis-
ion occurs, it is assumed  to be absolutely elastic.

Let OCzyz be a system of coordinates with origin at the pcint O cof the horizontal plane.
The @z axis is directed vertically upward. We denote the coordinates of the centre of mass
G by z,y,z2, and attach to the body a system of coordinates GEN{ whose axes are directed
along its principal central axes of inerxtia. The orientation of the body relative to absolute

space is defined by Euler's angles 0, ¢,% which are conventionally introduced. We denote the
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